
1

Automated Feature Identification in Web
Applications

Sarunas Marciuska, Cigdem Gencel, and Pekka Abrahamsson

Free University of Bolzano-Bozen,

Summary. Market-driven software intensive product development companies have
been more and more experiencing the problem of feature expansion over time. Prod-
uct managers face the challenge of identifying and locating the high value features
in an application and weeding out the ones of low value from the next releases. Cur-
rently, there are few methods and tools that deal with feature identification and they
address the problem only partially. Therefore, there is an urgent need of methods
and tools that would enable systematic feature reduction to resolve issues resulting
from feature creep. This paper presents an approach and an associated tool to auto-
mate feature identification for web applications. For empirical validation, a multiple
case study was conducted using three well known web applications: Youtube, Google
and BBC. The results indicate that there is a good potential for automating feature
identification in web applications.

Key words: feature creep, feature expansion, feature identification; feature reduc-
tion; feature location; feature monitoring; software bloat

1.1 Introduction

Feature creep [1, 2] (i.e. addition or expansion of features over time) has be-
come a significant challenge for market-driven software intensive product de-
velopment. Today’s software intensive products are overloaded with features,
which have led to an uncontrollable growth of size and complexity. A recent
study [3] revealed that most of the software products contain from 30 to 50
percent of features that have no or marginal value.

One of the major consequences of feature creep is feature fatigue [4], when
a product becomes too complex and has too many low value features. Users
then usually switch to other, simpler products. Moreover, feature creep can
also result in software bloat [5] that makes a computer application slower,
which requires higher hardware capacities, and increases the cost of mainte-
nance. One of the most recent example of software bloat is Nokia Symbian 60

ar
X

iv
:1

31
1.

52
70

v1
  [

cs
.S

E
] 

 2
1 

N
ov

 2
01

3



2 Sarunas Marciuska et al.

smartphone platform [6]. The system grew so much that it was too expensive
to maintain it, and therefore it was abandoned.

Currently, lean start-up [7] software business development methodology
tackles the feature creep problem by finding a minimum viable product that
contains only essential and the most valuable features. However, not all lean-
start up companies start development from scratch and can easily determine
the minimum viable product as they already have complex systems. For ex-
ample, by understanding how users are using the features, a company might
discover that a set of features maintained by the company are actually not too
much valuable for their customers. Thus, decision makers could analyse if re-
moval of such features would bring any long term benefits for the company as
there would be less features to maintain. Therefore, there is a need to monitor
and identify the features that are not too valuable in order to systematically
remove them from the product [6].

To start with the feature reduction process it is crucial to identify the
complete set of features. Features should be identified automatically in order
to reduce feature reduction process cost. After identifying the features, they
can be monitored by the company to detect how their values change in time.
For example, feature usage monitoring could indicate that the usage of some
features is decreasing, and thus such features might become candidates for
feature reduction. In our previous work, we showed that low feature usage is a
good indicator for the features that are potentially losing customer value [8].

There exists some approaches that tackle with feature monitoring and
identification problem (see Section 1.2). For example, a number of methods
aim to locate features from the source code [9], but they still lack precision.
Others aim to monitor system changes by observing user activity [10, 11].
However, such approaches collect too much irrelevant information (i.e. random
mouse clicks, mouse scrolling, all key strokes) and fail to monitor the system
on a feature level. Another set of approaches [12, 13] monitor system usage on
too high level of abstraction (i.e. page usage, but not a feature level usage).

The focus of this paper is to address the problem of automated feature
identification for web applications for feature reduction purposes. We set our
research questions as follows:

RQ1 : What constitutes a feature in web applications for the purposes of feature
reduction?

RQ2 : How well features could be identified in an automated manner in the
context of web applications?

Here, we present our approach and an associated tool that identifies ele-
ments of a web application (based on HTML5 technologies) that correspond
to features. To this end, first, we investigated definitions of a feature by mak-
ing a literature survey. Then, we defined formally what constitutes a feature
in web applications. Finally, we developed a tool, which implements the rules
for automatically identifying features in web applications.



1 Feature Identification 3

To evaluate the performance of our tool, we conducted a multiple case
study. We selected three well known web sites as the cases: Google, BBC, and
Youtube. The features for these web applications were first identified manually
by the participants of the case study and then in an automated way using our
tool. At the end, we compared the results using two operational measures:
precision and recall [14].

The rest of the paper is structured as follows: Section 1.2 presents the
related work. In Section 1.3, we elaborate on definitions of feature in the
literature. Then, by formalising the definition of a feature for web applications,
we describe our approach for feature identification. Section 1.4 presents the
case study and the results. In Section 1.5, we discuss threats to validity for this
study. Finally, Section 1.6 concludes the work and presents future directions.

1.2 Related Work

The feature location field aims to locate features and their dependencies
in the code of a software system. A recent systematic literature review on
feature location [9] categorizes the existing techniques in four groups: static,
dynamic, textual, and historical.

Static feature location techniques [15, 16, 17] use static analysis to locate
features and their dependencies from the source code. The results present de-
tailed information such as variable, class, method names and relations between
them. The main advantage of these approaches is that they do not require ex-
ecuting the system in order to collect the information. However, they require
to have an access to the source code. Moreover, static analysis generate a set
of features dependent on the source code, so they involve a lot of noise (i.e.
variable names that do not represent features).

Dynamic feature location techniques [18, 19, 20] use dynamic analysis to
locate the features during runtime. As an input this technique requires a set of
features, which has to be mapped to source code elements of the system (i.e.
variables, methods, classes). As a result, a dependency graph among given
features is generated. The main advantage of these techniques is that it shows
the parts of the code called during the execution time. However, dynamic
feature location techniques rely on the user predefined initial feature set, so
they cannot generate a complete features set beforehand.

Textual feature location techniques [21, 22, 23, 24, 25] examine the textual
parts of the code to locate features. As an input this technique requires to
define a query with feature descriptions. Later, the method uses information
retrieval and language processing techniques to check the variables, classes,
method names, and comments to locate them. The main advantage of these
techniques is that they map features to code. However, like dynamic feature
location technique, it requires a predefined feature set with their descriptions.



4 Sarunas Marciuska et al.

Historical feature location techniques [26, 27] use information from soft-
ware repositories to locate features. The idea is to query features from com-
ments, and then associate them to the lines that were changed in respective
code commit. The main advantage of these techniques is that they can map
features to a very low granularity of the source code, that is to exact lines.
However, as in dynamic and textual approaches, this technique cannot deter-
mine a complete features set in an automated manner. In the next section,
we present our approach to address this issue.

1.3 A Method for Automated Feature Identification in
Web Applications

There are a number of definitions in literature for what constitutes a feature.
Below, we elaborate on some of these definitions and then present our formal
definition for a feature for web applications.

1.3.1 Feature Definitions

The definition of ’a feature’ varies widely depending on the area and purpose of
the study. Classen et al. [28] made a detailed analysis on different definitions
of a feature in the contexts of requirements engineering, software product
lines and feature oriented software development. Below there are some of the
definitions from this study:

• ”A feature represents an aspect valuable to the customer” [29].
• ”A feature is a prominent or distinctive user-visible aspect, quality or

characteristic of a software system or systems” [30].
• ”Features are distinctively identifiable functional abstractions that must

be implemented, tested, delivered, and maintained” [31].
• ”A logical unit of behaviour specified by a set of functional and non-

functional requirements” [32].
• ”A product characteristic from user or customer views, which essentially

consists of a cohesive set of individual requirements” [33].
• ”An elaboration or augmentation of an entity(s) that introduces a new

service, capability or relationship” [34].
• ”An increment in product functionality” [35].
• ”A structure that extends and modifies the structure of a given program in

order to satisfy a stakeholder’s requirement, to implement and encapsulate
a design decision, and to offer a configuration option” [36].

Classen et al. [28] claimed that there is a need to have a definition, which
covers all kinds of requirements, domain properties and specifications. Thus,
they provided their own definition as: ”A feature is a triplet, f = (R, W, S),
where R represents the requirements the feature satisfies, W the assumptions
the feature takes about its environment and S its specification” [28].



1 Feature Identification 5

However, most of the aforementioned definitions are either very generic or
vague in order to be used for automatic feature identification, because they
rely on subjective human evaluation (features may be interpreted differently
by different people). For example, the aforementioned feature definition by
Classen et al. [28] can identify different features for the same system depending
on how the requirements specification document is written.

To the best of our knowledge, only one definition provided by Eisenbarth
et al. [37] removes the subjective human element. It has been cited by most
of the work done in feature location area. The authors define a feature as
”a realized functional requirement of a system (i.e. is an observable unit of
behaviour of a system triggered by the user)”.

This definition makes it clear that 1) features are identified based on events
triggered by users, and 2) they realise functional requirements. For example,
a case where a user has to enter his email, password and press the login
button in order to login is different from the case where system remembers
his credentials and he just has to press the login button in order to login. In
the first scenario, three features are identified, while in the second, only one
even though the final state was the same (that is, the user logged into the
system).

These two scenarios might be interpreted differently by different people
depending on the abstraction level how they perceive what a feature is. In
this study, we focus on the lowest granularity level features in order to be able
to identify them automatically. Then, our approach allows decision makers to
group similar features to represent them at higher granularity levels (see [38]
for details).

Moreover, according to the definition non-functional requirements (such
as performance requirements) are not features, but they might affect how
features are implemented. In addition, some of them might evolve into func-
tional requirements (such as usability requirements) during implementation,
but then these would be identified based on the events triggered by users.

In this study, we extended the definition to include the features that are
triggered not only by users, but by other systems as well (i.e. web services),
since in some cases they can also be considered as users. We used this version
of the definition when conducting our case study to evaluate the performance
of the tool in automatically identifying features against manual identification.

1.3.2 A Formal Definition for a Feature in Web Applications

In the context of web applications, features that relate to functional require-
ments, are visible for system users through a web browser. This means that
to identify features, it is not necessary to analyse a complex server side imple-
mentation of a system, which can be developed using different programming
languages (i.e. Java, PHP, C). Therefore, in this study we focus only on the
client side analysis. Currently, vast majority of the client side web based ap-
plications are designed using HTML5, JavaScript, and CSS technologies.



6 Sarunas Marciuska et al.

According to our feature definition, there are limited possibilities how a
feature could be implemented using the aforementioned technologies. There-
fore, a feature in a web application is: 1) a specific HTML5 element, which
changes system’s state that can be observed when event is triggered; 2) any
HTML5 element, which has attached event that changes system’s state in
observable way.

In HMTL5 there are only three elements that can be considered features
without having any event attached to them [39]. The elements are called
ancor, input, and textarea. In addition, input element should not be of a type
”hidden”, because in such a way it used as a variable and is not a feature. The
remaining elements become features if one of the four event types is attached
to them: a mouse event (see Table 1.1), a keyboard event (see Table 1.2), a
frame and object event (see Table 1.3), or a form event (see Table 1.4).

Table 1.1. Mouse Events

Event Description

onclick Event occurs when the user clicks on an element

ondblclick Event occurs when the user double-clicks on an element

onmousedown Event occurs when a user presses a mouse button over an element

onmousemove Event occurs when the pointer is moving while it is over an element

onmouseover Event occurs when the pointer is moved onto an element

onmouseout Event occurs when a user moves the mouse pointer out of an element

onmouseup Event occurs when a user releases a mouse button over an element

Table 1.2. Keyboard Events

Event Description

onkeydown Event occurs when the user is pressing a key

onkeypress Event occurs when the user presses a key

onkeyup Event occurs when the user releases a key

1.3.3 An Algorithm for Automated Feature Identification

We designed an algorithm to identify features in web applications. The main
idea of the algorithm is to parse the Document Object Model (DOM) and
to select all HTML5 elements that correspond to features, or all HTML5
elements that have one of the four aforementioned events assigned to them.
The pseudo code of the algorithm is given below (see Algorithm 1). The



1 Feature Identification 7

Table 1.3. Frame and Object Events

Event Description

onabort Event occurs when an image is stopped from loading before com-
pletely loaded (for object)

onerror Event occurs when an image does not load properly

onload Event occurs when a document, frameset, or object has been loaded

onresize Event occurs when a document view is resized

onscroll Event occurs when a document view is scrolled

onunload Event occurs once a page has unloaded (for body and frameset)

Table 1.4. Form Events

Event Description

onblur Event occurs when a form element loses focus

onchange Event occurs when the content of a form element, the selection, or
the checked state have changed (for input, select, and textarea)

onfocus Event occurs when an element gets focus (for label, input, select,
textarea, and button)

onreset Event occurs when a form is reset

onselect Event occurs when a user selects some text (for input and textarea)

onsubmit Event occurs when a form is submitted

algorithm identifies features on a low level of abstraction, which later can be
manually increased by grouping features using Feature Usage Diagram [38].

Algorithm 1 A Complete Feature Set Identification

1: result set← ∅
2: event set← {all HTML5 events}
3: feature set← {all HTML5 features}
4: DOM ← {DOM of interest}
5: element← DOM.first
6: while element 6= ∅ do
7: if element IN feature set then
8: result set← element
9: else if element.events IN event set then

10: result set← element
11: end if
12: element← DOM.next
13: end while
14: return result set



8 Sarunas Marciuska et al.

Algorithm 1 requires three input parameters: HTML5 event set of interest
(event set), HTML5 element set that represent features (feature set), and
the DOM of a website of interest (DOM).

The algorithm iterates through all elements of DOM and checks whether a
selected element (element) is one of the elements from feature set, or it has
one of the events from the event set attached. If it is the case the element is
added to a result set (result set), which is returned after loop iterations are
finished.

The runtime complexity of the algorithm is O(n(1+m)) = O(n2). In takes
O(n) times to iterate over n elements in DOM. Assuming that feature set and
event set are implemented using hash table, then to check if feature set con-
tains element takes O(1) time. Therefore, to iterate over all element.events
and to check if they are in event set it takes O(m) time.

We implemented this algorithm using the JavaScript programming lan-
guage. The code is available as the external JavaScript library on the following
website: http://www.featurereduction.org. Initially, it has a feature set
predefined, which contains ancor, input, and textarea elements. Since the
vast majority of the websites are built using just few events (i.e. onclick,
onkeystroke), the tool allows user to select custom event set from a complete
list of HTML5 events: a mouse event (see Table 1.1), a keyboard event (see
Table 1.2), a frame and object event (see Table 1.3), or a form event (see
Table 1.4). Then, a custom JavaScript library is generated, which contains
the selected event set.

There are two ways to use this tool when identifying the set of features
for a web application of interest: 1) put the aforementioned library directly
on a website where it is hosted; 2) download the website and include the
library in the downloaded version of it. Obviously, the latter approach is able
to identify features only in the downloaded pages. It would not work on the
pages that are dynamically generated or cannot be downloaded. Nevertheless,
in a normal use case scenario, companies have a full access to their websites
and can apply the first method.

Finally, the following information is presented as the result:

1. the full path to an element,
2. the title attribute of the element,
3. the name attribute of the element,
4. the id attribute of the element,
5. the value attribute of the element,
6. the text field of the element.

The full path to the element helps to find it in the DOM. We assumed
that the title, name, id, value attributes and text field, if present, usually
contain human understandable information, which contains a description of
the feature. We test this assumption in our case study, which we present in
the next section.

http://www.featurereduction.org


1 Feature Identification 9

1.4 Case Study

We conducted a multiple-case study according to [40] to evaluate whether our
tool performs well in identifying the features in web applications with respect
to manual identification.

We selected three web applications for the case study: Google, BBC, and
Youtube. The selected websites cover a wide range of daily used applications
having search, news and video streaming features. One major reason why we
chose these websites was that they are used in different contexts, and thereby,
we could test our tool to identify variety of features developed for different
contexts. Another reason was that most readers would be familiar with these
applications as they are widely used (according to the Alexa traffic rating [41]
they are among top 10 most popular websites in Great Britain). Finally, as
these websites are not customised based on user demographics, the set of
features would be the same for all participants of the case study and hence
the results could be comparable.

In addition to the first author of this paper, 9 subjects, who are frequent
users of the case applications, participated in this study. This is a convenience
sample, where the participants have varying backgrounds (i.e. medicine, de-
sign, computer science) and sufficient knowledge and experience in using web
applications.

1.4.1 Case Study Conduct

Before the case study, we downloaded the main web pages of the case websites
to make sure that all participants have the same version of the website. After
that, we distributed the downloaded pages as executable systems to the par-
ticipants, introduced the participants our formal feature definition and then
asked them to manually identify the features. The participants were given as
much time as they need to complete the task.

As our purpose in this case study was to identify manually all the features
of the selected applications in order to compare them to the results of our
automated tool, we needed to have a correct and compete set of features that
were identified manually. Therefore, after the set of features identified by the
participants converged to a one final set, we considered this as the complete
set and we stopped asking more people to participate in the case study. In
parallel, the first author of this paper also identified the set of features in
the same way as the participants to cross-check the features identified by the
participants.

Later, we asked the participants to write down the information about
features in a text file. Finally, we used our tool to identify the features from
the downloaded web pages. The results from the tool were printed out to the
console of a web browser.

To evaluate the performance of our tool we used operational measures:
precision and recall. Precision indicates whether the tool collects elements



10 Sarunas Marciuska et al.

that are not features and recall indicates whether the tool determines the
complete features set.

As a pre-analysis, we verified with all the participants each feature, which
they identified and recorded. We excluded the data provided by two of the
participants as they provided too generalized outputs (i.e. ”menu widget fea-
tures”). They mentioned that it was too much time consuming task. Therefore,
they could not provide a complete feature set.

To compute the precision and recall, we compared features identified by
the participants and the tool to the complete feature set. In addition, we
compared the data collected by the tool with the feature description provided
by the participants.

Then, we made informal interviews with the participants to receive feed-
back on the features, which were identified by them, but not identified by the
tool, and vice versa.

1.4.2 Results and Analysis

The results showed that there were both visible features and hidden features
in the applications of the case study. Visible features are the ones that par-
ticipants were expected to detect manually through a web browser without
using other tools or looking at the code of a given website. Google had 33,
Youtube had 80 and BBC had 96 visible features in total.

The analysis of the results showed that the precision was 100% in both
manual and automatic identification of visible features. This means that both
the tool and the participants could identify the elements that correspond to
features. Figure 1.1 presents the results of the recall measure.

The recall measure to automatically identify visible features by the tool
was 100% for the Google website, 91% for the Youtube website, and 100% for
the BBC website. When we investigated why our tool could not identify all
the features in the Youtube website, we saw that this is due to Flash technolo-
gies used in this website. This showed that our tool has some technological
limitations when identifying features.

When we compared the performance of our tool to manual identification
of the features, we saw that our tool overperforms the participants in most
of the cases. We checked with the subjects why they failed to identify all the
visible features. Here are the reasons we found after our interviews:

• Missed. Some of the features were simply missed by the participants due
to carelessness in manual identification. It was understood that the great
majority of such features were not visible instantly in the main page as
they were placed in drop down, or pull down lists.

• Redundant. The participants reported that there were some features that
had the same functionality as the ones, which they had already identified.
Therefore, they didn’t add these features in the list. For example, the link



1 Feature Identification 11

Fig. 1.1. Case Study Results – Recall

on the icon of the commentator and the link on the name of the com-
mentator in Youtube leads to the same page. Therefore, some participants
identified only one feature instead of two in this case.

Finally, we compared the representation of the results provided by our
tool and the results provided by the participants. We noticed that most of the
participants used the name of a feature from a website to describe its function-
ality. After analyzing the tool results, we found out that this information was
stored in text, value, or title attributes. The rest of the attributes (id attribute
and name attribute) were not useful for this task. To describe the location of
a feature participants indicated the main container where a selected feature
belongs to. On the other hand, the full path of the feature provides even more
detailed information as the one provided by the participants.

One major result of the case study was that our tool could identify a high
number of hidden features, which could not be detected by the participants
manually. In the Google website, our tool identified 15, in the Youtube website
8, and in the BBC website 126 hidden features.

After analyzing the source code of such features, we found out that most
of these were related to personal user preferences, or the device that is used
to open the website. For example, if a user opens a website using a mobile
phone or tablet, then the feature set is adapted accordingly. In addition, there
were a few features, which did not seem to add any value (such as 3 hidden
textarea elements in the main google website that are not necessary). Those
features might be important for the developers of the website for some reason,
or might be just obsolete features, which hang in the code without any specific



12 Sarunas Marciuska et al.

purpose. This shows that out tool has the potential to indicate different kind
of features, which could be removed after developers assess them.

1.5 Threats to Validity

We discuss the validity threats of this study according to the categorization
suggested by Runeson and Host for case studies [42]: 1) Construct validity, 2)
Internal validity, 3) External validity, and 4) Reliability.

Construct Validity.

Construct validity refers to what extent the operational measures represent
what is investigated according to the research questions. One validity threat
could have been related to our definition for feature for web applications as
well as how it is interpreted. Therefore, we first built our definition upon one
of the widely cited definition in the feature location research area [37]. We
also kept the granularity level of a feature at the lowest level so that it would
be possible to group related features if one needs to represent them at higher
levels.

Furthermore, we formalised our definition in order to be able to imple-
ment an algorithm to automate feature identification. This in turn also helped
in avoiding subjective misinterpretation of the definition by the participants
when they were identifying the features manually. One of the operational
measures used in this study was precision. As the precision values for both
manual and automatic identification of visible features were 100%, we also
conclude that all elements identified as features with the tool comply with
our definition.

Another possible validity threat could have been due to making a mistake
in identifying a complete feature set as the second operational measure; recall,
was calculated based on this figure. To mitigate this threat, first, one of the
authors of this study manually identified the features. Then, we observed
whether the manually identified features converge to the one final set as we
receive input from more participants. If participants identified new features,
which were not present in the initial complete feature set, then we extended it
with those features. We stopped involving more subjects in a manual feature
identification when we saw that adding more participants was not adding
any new information. Therefore, we believe that this set should reflect the
complete set.

Internal Validity.

Internal validity concerns the causality relation between the treatment and the
outcome, and whether the results do follow from the data. In this study, we
evaluated the performance of our method and tool in comparison to manual



1 Feature Identification 13

identification of features. One validity threat could have been if the partici-
pants did not have enough knowledge about selected websites to perform the
task well. To mitigate this task we chose the participants, who were existing
users of the selected websites. Furthermore, we purposefully chose the case
applications that are frequently used. In this way, we believe that the sub-
jects had sufficient knowledge about the features of the websites. In fact, all
participants showed similar performance for all three cases.

External Validity.

External validity refers to what extent it is possible to generalize the findings
to different or similar contexts. We designed the case study as a multiple-case
study where we used three different web applications. Therefore, we could eval-
uate the method and the tool developed in this study for a variety of features
coming from different web applications. However, one threat, which we could
not totally avoid, might have occurred due the technology used when devel-
oping the case applications. We observed that our tool has some technological
limitations in identifying the features. There is a possibility that the results
could have been affected if other case applications, which use very different
technologies, had been selected. However, we believe that our results can be
generalizable to some extent, as we replicated the study using three different
web applications developed for different contexts using different technologies.
Still, there is a need to test the method and the tool for very different web
applications. Furthermore, we could not evaluate our approach for the cases
where decision makers prefer to group features and represent them at higher
granularity levels. Our results are also not generalizable for other systems,
which are not web applications (i.e. desktop applications). The goal and the
scope of this study was to design an approach to automatically identify fea-
tures in web applications. Therefore, there is a need to define what a feature
constitutes for other application types. Then, algorithms and/or rules could
be created to identify a complete feature set.

Reliability.

Reliability reflects to what extent the data and the analysis depend on the
specific researchers. We used two objective operational measures in this study:
precision and recall. Therefore, we do not see any validity threat in interpreting
them. However, one validity threat could have been the interpretation of the
feature set descriptions provided by the participants. To mitigate this treat,
we verified with each participant what we understood from their inputs.

1.6 Conclusion and Future Work

In this paper, we presented an approach and an associated tool for automat-
ing features identification in web applications. The results of the case study



14 Sarunas Marciuska et al.

showed that our approach has a significant potential to identify features in
web applications.

Furthermore, we found out that our tool is also able to identify hidden
features in addition to visible ones, which could not be identified manually by
users. Some of these features appeared to be with no significant value, that is
they might be candidates to be removed from the system. Therefore, we see
this method as a first step towards automatic feature reduction process.

Moreover, the results of the case study showed that manual feature iden-
tification is prone to human mistakes even for websites with a relatively small
number of features. Therefore, we conclude that development of such a tool
provides more benefits when used to identify features in big systems with
complex structures and high number of features.

As a future work, we plan to investigate ways to capture features imple-
mented by other technologies such as Flash. We will analyze if similar ap-
proach can be applied in desktop applications. Furthermore, we will explore
the ways how a complete feature set can be visualized. We plan to investigate
how the relations between features can be detected automatically.

The automatic feature identification is the first step towards automatic
feature usage monitoring. We plan to explore how such information can be
used to improve product. For example, it would be interesting to understand
if relocation of features can increase the usage and bring more value for the
company.

Acknowledgment

The authors would like to thank the participants of the case study who pro-
vided their precious time and effort.

References

1. B. Elliott, Anything is possible: Managing feature creep in an innovation rich
environment, In Engineering Management Conference, pp. 304-307, IEEE, 2007.

2. F. D. Davis and V. Venkatesh, Toward preprototype user acceptance testing of
new information systems: implications for software project management, IEEE
Transactions on Engineering Management 51(1), 2004.

3. C. Ebert and R. Dumke, Software Measurement, Springer, 2007.
4. R. T. Rust, D. V. Thompson, and R. W. Hamilton, Defeating feature fatigue,

In Harvard Business Review, 84 (2), pp. 98-107, 2006.
5. G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky, Software bloat

analysis: Finding, removing, and preventing performance problems in modern
large-scale object-oriented applications, In Proceedings of the FSE/SDP work-
shop on Future of software engineering research, 2010.

6. C. Ebert, P. Abrahamsson, and N. Oza, Lean Software Development, In IEEE
Software, pp. 22-25, Oct. 2012.



1 Feature Identification 15

7. E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous Inno-
vation to Create Radically Successful Businesses, Journal of Product Innovation
Management, 2011.

8. S. Marciuska, C. Gencel, and P. Abrahamsson: Exploring How Feature Usage
Relates to Customer Perceived Value: A Case Study in a Startup Company. In:
4th International Conference on Software Business. pp. 166177, 2013.

9. B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, Feature Location in Source
Code: A Taxonomy and Survey, In Journal of Software Maintenance and Evo-
lution: Research and Practice, 2011.

10. R. Atterer, M. Wnuk, and A. Schmidt, Knowing the user’s every move: user
activity tracking for website usability evaluation and implicit interaction, In
Proceedings of the International Conference on World WideWeb, pp. 203, 2006.

11. Microsoft Spy++, url: http://msdn.microsoft.com/en-us/library/

aa264396(v=vs.60).aspx, Last visited on the 31st of March 2013.
12. OpenSpan Desktop Analytics, url: http://www.openspan.com/products/

desktop_analytics, Last visited on the 31st of March 2013.
13. Google Analytics, url: http://www.google.com/analytics, Last visited on the

31st of March 2013.
14. C. D. Manning, P. Raghavan, and H. Schutze: Introduction to information re-

trieval. Cambridge: Cambridge University Press, 2008.
15. K. Chen and V. Rajlich, Case Study of Feature Location Using Dependence

Graph, In Proceedings of 8th IEEE International Workshop on Program Com-
prehension, pp. 241-249, 2000.

16. M. P. Robillard and G. C. Murphy, Concern Graphs: Finding and describing
concerns using structural program dependencies, In Proceedings of International
conference on software engineering, pp. 406-416, 2002.

17. M. Trifu, Using Dataflow Information for Concern Identification in Object-
Oriented Software Systems, In Proceedings of European Conference on Software
Maintenance and Reengineering, pp. 193-202, 2008.

18. A. D. Eisenberg and De K. Volder, Dynamic Feature Traces: Finding Features
in Unfamiliar Code, In Proceedings of 21st IEEE International Conference on
Software Maintenance, Budapest, Hungary, pp. 337-346, 2005.

19. J. Bohnet, S. Voigt, and J. Dollner, Locating and Understanding Features of
Complex Software Systems by Synchronizing Time, Collaboration and Code-
Focused Views on Execution Traces, In Proceedings of 16th IEEE International
Conference on Program Comprehension, pp. 268-271, 2008.

20. D. Edwards, N. Wilde, S. Simmons, and E. Golden, Instrumenting Time-
Sensitive Software for Feature Location, In Proceedings of International Con-
ference on Program Comprehension, pp. 130-137, 2009.

21. M. Petrenko, V. Rajlich, and R. Vanciu, Partial Domain Comprehension in
Software Evolution and Maintenance, In International Conference on Program
Comprehension, 2008.

22. A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, An Information Retrieval
Approach to Concept Location in Source Code, In Proceedings of 11th IEEE
Working Conference on Reverse Engineering, pp. 214-223, 2004.

23. S. Grant, J. R. Cordy, and D. B. Skillicorn, Automated Concept Location Using
Independent Component Analysis, In Proceedings of 15th Working Conference
on Reverse Engineering, pp. 138-142, 2008.

http://msdn.microsoft.com/en-us/library/aa264396(v=vs.60).aspx
http://msdn.microsoft.com/en-us/library/aa264396(v=vs.60).aspx
http://www.openspan.com/products/desktop_analytics
http://www.openspan.com/products/desktop_analytics
http://www.google.com/analytics


16 Sarunas Marciuska et al.

24. E. Hill, L. Pollock, and K. V. Shanker, Automatically Capturing Source Code
Context of NL-Queries for Software Maintenance and Reuse, In Proceedings of
31st IEEE/ACM International Conference on Software Engineering, 2009.

25. D. Poshyvanyk and A. Marcus, Combining formal concept analysis with infor-
mation retrieval for concept location in source code, In Program Comprehension,
pp. 37-48, 2007.

26. A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and A. Michail,
CVSSearch: searching through source code using CVS comments, In Proceedings
of IEEE International Conference on Software Maintenance, pp. 364-373, 2001.

27. S. Ratanotayanon, H. J. Choi, and S. E. Sim, Using Transitive changesets to
Support Feature Location, In Proceedings of 25th IEEE/ACM International
Conference on Automated Software Engineering, pp. 341-344, 2010.

28. A. Classen, P. Heymans, and P. Y. Schobbens, What’s in a feature: A require-
ments engineering perspective, Fundamental Approaches to Software Engineer-
ing, pp. 16-30, 2008.

29. M. Riebisch, Towards a more precise definition of feature models, Modelling
Variability for Object-Oriented Product Lines, pp. 64-76, 2003.

30. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, Feature-
oriented domain analysis (FODA) feasibility study, Carnegie-Mellon University,
Pittsburgh, Software Engineering Institute, 1990.

31. K. C. Kang, Feature-oriented development of applications for a domain, In Soft-
ware Reuse, 1998. Proceedings, pp. 354-355, IEEE, 1998.

32. J. Bosch, Design and use of software architectures: adopting and evolving a
product-line approach, Addison-Wesley Professional, 2000.

33. K. Chen, W. Zhang, H. Zhao, and H. Mei, An approach to constructing feature
models based on requirements clustering, In Requirements Engineering, 2005.
Proceedings, pp. 31-40, IEEE, 2005.

34. D. Batory, Feature modularity for product-lines, Tutorial at: OOPSLA, 6, 2006.
35. D. Batory, D. Benavides, and A. Ruiz-Cortes, Automated analysis of feature

models: challenges ahead, Communications of the ACM, 49(12), pp. 45-47, 2006.
36. S. Apel, C. Lengauer, D. Batory, B. Moller, and C. Kastner, An algebra for

feature-oriented software development, Number MIP-0706. University of Passau,
2007.

37. T. Eisenbarth, R. Koschke, and D. Simon, Locating Features in Source Code,
In IEEE Computer, 29(3):210, Mar. 2003.

38. S. Marciuska, C. Gencel, X. Wang, and P. Abrahamsson: Feature Usage Diagram
for Feature Reduction. In: Agile Processes in Software Engineering and Extreme
Programming. pp. 223-237, Springer Berlin Heidelberg, 2013.

39. HTML Reference, http://www.w3schools.com/tags/default.asp, Last visited
on the 31st of March 2013.

40. R. K. Yin, Case study research: Design and methods, SAGE Publications, In-
corporated, 2002.

41. Alexa traffic rating, http://www.alexa.com/topsites/countries/GB, Last vis-
ited on the 31st of March 2013.

42. P. Runeson and M. Host, Guidelines for conducting and reporting case study
research in software engineering, In Empirical Software Engineering, pp. 131-
164, 2009.

http://www.w3schools.com/tags/default.asp
http://www.alexa.com/topsites/countries/GB

	1 Automated Feature Identification in Web Applications
	Sarunas Marciuska, Cigdem Gencel, Pekka Abrahamsson

